
CFG Example

Example Context Free Grammar

Load the file CFGExercise.jflap or alternately click on the Grammar option and enter the
following rules

S → TT

S → U

T → 0T

T → T0

T → #

U → 0U00

U → #

A context free grammar basically consists of a system of symbols, some of which can be
replaced by other symbols via rules that are called production rules. For instance, in this
particular grammar, the S can be replaced at any time by two T s . The symbols that cannot
be replaced are called the non-terminals. In the case of this particular grammar, the 0 and
the # are terminals.

Grammars are used to provide rules to produce strings of terminals. The process of
producing these strings always begins with one special symbol, the start symbol. The start
symbol is usually the symbol that is on the left side of the top rule.

For instance, in this particular example, here is one way of producing 0##0.

1. S → TT

2. replace the left T with 0T . So we have 0TT

3. replace the rightmost T with T0. We have 0TT0.

4. finally replace both T with # to get the desired string

Brute Force Parsing

The process of trying to see whether a given string can be produced via the rules of a
grammar is called parsing. There are several methods of parsing, some more efficient than
others. Depending upon the properties satisfied by the grammar, certain efficient algorithms
may or may not apply.

Regardless, one method that can always be applied is that of brute force parsing. This
basically means we explore every possible path at each stage.

1



Let us try using the brute force parser in JFLAP to see how to produce 0##0
By clicking on Brute Force parse (in the input sub menu) you get the option of entering

a string to be parsed. Clicking set and stepping through the parser, the following steps are
executed

The start symbol can derive either TT or U .

At each step we use a production rule but eliminate the ones that cannot possibly produce
the strings in question. For instance in this case, the rules for U can be discarded since they
either produce a single # or a string with 3 0s. So the current derivations correspond to
using the different rules for T . The current nodes column gives you all the nodes that are
being produced, but the current derivations column does the pruning (otherwise this is very
tough to maintain).

2



3



4



At this stage, there are only 3 possible derivations that are being retained and it is clear
that the final step will have to involve the T → # rule.

This is the complete brute parse table

5



The parsing can also be viewed in the format of a tree by changing the view(use the
selector above the parse table) to a derivation view.

6



Language Generation

JFLAP can also provide some insight into the complete language that is generated by the
grammar. By using the generate language feature you can generate strings up to a certain
length.

Before using the feature, what do you think the language being generated is? What
property do string being generated by these rules satisfy?

Here for instance are all strings of length 4.

7



And here are strings of length 5

8



9


